A Conceptual Approach to Partitioning a Vertical Profile of Phytoplankton Biomass Into Contributions From Two Communities

by R. J. Brewin, G. Dall’Olmo, J. A. Gittings, X. Sun, P. K. Lange, D. E. Raitsos, H. A. Bouman, I. Hoteit, J. Aiken, S. Sathyendranath
Journal of Geophysical Research Year:2022 DOI: 10.1029/2021JC018195

Bibliography

Journal of Geophysical Research: Oceans, Volume 127, Issue 4, April 2022, Article number e2021JC018195

Abstract

We describe an approach to partition a vertical profile of chlorophyll-a concentration into contributions from two communities of phytoplankton: one (community 1) that resides principally in the turbulent mixed-layer of the upper ocean and is observable through satellite visible radiometry; the other (community 2) residing below the mixed-layer, in a stably stratified environment, hidden from the eyes of the satellite. The approach is tuned to a time-series of profiles from a Biogeochemical-Argo float in the northern Red Sea, selected as its location transitions from a deep mixed layer in winter (characteristic of vertically well-mixed systems) to a shallow mixed layer in the summer with a deep chlorophyll-a maximum (characteristic of vertically stratified systems). The approach is extended to reproduce profiles of particle backscattering, by deriving the chlorophyll-specific backscattering coefficients of the two communities and a background coefficient assumed to be dominated by non-algal particles in the region. Analysis of the float data reveals contrasting phenology of the two communities, with community 1 blooming in winter and 2 in summer, community 1 negatively correlated with epipelagic stratification, and 2 positively correlated. We observe a dynamic chlorophyll-specific backscattering coefficient for community 1 (stable for community 2), positively correlated with light in the mixed-layer, suggesting seasonal changes in photoacclimation and/or taxonomic composition within community 1. The approach has the potential for monitoring vertical changes in epipelagic biogeography and for combining satellite and ocean robotic data to yield a three-dimensional view of phytoplankton distribution. 

Keywords

biogeography chlorophyll a community structure mixed layer phenology phytoplankton robotics satellite data
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

    Al-Khwarizmi Building (1)

© King Abdullah University of Science and Technology. All rights reserved