Curing Effect on Durability of Cement Mortar with GGBS: Experimental and Numerical Study

by R. Ghostine, N. Bur, F. Feugeas, I. Hoteit
Materials Year:2022 DOI: https://doi.org/10.3390/ma15134394

Bibliography

Materials, Volume 15, Issue 13, July-1 2022, Article number 4394

Abstract

In this paper, supplementary cementitious materials are used as a substitute for cement to decrease carbon dioxide emissions. A by-product of the iron manufacturing industry, ground granulated blast-furnace slag (GGBS), known to improve some performance characteristics of concrete, is used as an effective cement replacement to manufacture mortar samples. Here, the influence of curing conditions on the durability of samples including various amounts of GGBS is investigated experimentally and numerically. Twelve high-strength Portland cement CEM I 52.5 N samples were prepared, in which 0%, 45%, 60%, and 80% of cement were substituted by GGBS. In addition, three curing conditions (standard, dry, and cold curing) were applied to the samples. Durability aspects were studied through porosity, permeability, and water absorption. Experimental results indicate that samples cured in standard conditions gave the best performance in comparison to other curing conditions. Furthermore, samples incorporating 45% of GGBS have superior durability properties. Permeability and water absorption were improved by 17% and 18%, respectively, compared to the reference sample. Thereafter, data from capillary suction experiments were used to numerically de-termine the hydraulic properties based on a Bayesian inversion approach, namely the Markov Chain Monte Carlo method. Finally, the developed numerical model accurately estimates the hydraulic characteristics of mortar samples and greatly matches the measured water inflow over time through the samples. 

Keywords

Blast furnaces Carbon dioxide Compressive strength Curing Durability Global warming High performance concrete Manufacture Monte Carlo methods Mortar Slags Water absorption
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

    Al-Khwarizmi Building (1)

© King Abdullah University of Science and Technology. All rights reserved