Effects of multi-observations uncertainty and models similarity on climate change projections

by R. Pathak, H. P. Dasari, A. Karumuri, I. Hoteit
npj Climate and Atmospheric Science Year:2023 DOI: 10.1038/s41612-023-00473-5

Bibliography

npj Climate and Atmospheric Science, Volume 6, Issue 1, December 2023, Article number 144

Abstract

Climate change projections (CCPs) are based on the multimodel means of individual climate model simulations that are assumed to be independent. However, model similarity leads to projections biased toward the largest set of similar models and intermodel uncertainty underestimation. We assessed the influences of similarities in CMIP6 through CMIP3 CCPs. We ascertained model similarity from shared physics/dynamics and initial conditions by comparing simulated spatial temperature and precipitation with the corresponding observed patterns and accounting for intermodel spread relative to the observational uncertainty, which is also critical. After accounting for similarity, the information from 57 CMIP6, 47 CMIP5, and 24 CMIP3 models can be explained by just 11 independent models without significant differences in globally averaged climate change statistics. On average, independent models indicate a lower global-mean temperature rise of 0.25 °C (~0.5 °C–1 °C in some regions) relative to all models by the end of the 21st century under CMIP6’s highest emission scenario. 

Keywords

Climate Change Climate Modeling CMIP Computer Simulation emission inventory future prospect model test model validation Numerical Model Uncertainty Analysis Weather forecasting
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

    Al-Khwarizmi Building (1)

© King Abdullah University of Science and Technology. All rights reserved