Spatiotemporal variability of hydro-meteorological droughts over the Arabian Peninsula and associated mechanisms

by MD S. Saharwardi, H. P. Dasari, H. Gandham, A. Karumuri, I. Hoteit
Scientific Reports Year:2024 DOI: 10.1038/s41598-024-70869-7

Bibliography

Scientific Reports, Volume 14, Issue 1, December 2024, Article number 20296

Abstract

This study examines the spatiotemporal variability of drought and associated physical processes over the Arabian Peninsula (AP). For this purpose, we computed the standardized precipitation evapotranspiration index (SPEI) for the period 1951–2020 using the Climate Research Unit and fifth generation ECMWF atmospheric reanalysis datasets. By applying rotated empirical orthogonal function analysis on the SPEI data, we identified four homogeneous and coherent drought regions. The droughts in the northern regions follow a relatively similar temporal evolution as compared to those in the southern region. All four sub-regions of the AP exhibit a significant drying trend (p < 0.01) with an abrupt acceleration in drought frequency and intensity over the last two decades. The increase in droughts is associated with the reduction of synoptic activity and an increase in the high pressure over the AP. Seasonally, potential evapotranspiration is the dominant driver of summer droughts in the AP, whereas both precipitation and temperature are important for driving winter droughts. The summer droughts, mainly over the northern AP, are due to the occurrence of an anomalous equivalent barotropic high associated with anomalous dry and hot conditions. However, anomalous dry conditions in winter are a result of an anomalous paucity of winter storms caused by the weakening of the sub-tropical jets. 

Keywords

Acceleration drought evapotranspiration hyperbaric pressure physical phenomena precipitation temperature winter
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

    Al-Khwarizmi Building (1)

© King Abdullah University of Science and Technology. All rights reserved